Influence of the oestrous cycle on L-glutamate and L-aspartate transport in rat brain synaptosomes.

نویسندگان

  • A D Mitrovic
  • J E Maddison
  • G A Johnston
چکیده

Oestrous cycle and sex differences in sodium-dependent transport of L-[3H]glutamate and L-[3H]aspartate were investigated employing well washed synaptosomes prepared from rat brain cortex. Transport was best analysed on the basis of two components, a high and low affinity transport site. Oestrous cycle and sex differences were observed for both substrates. The high affinity transporter displayed highest affinity for glutamate transport in synaptosomes from female rats during proestrous and oestrous. This differed significantly from glutamate transport during dioestrous and in male rats. High affinity aspartate transport displayed highest affinity during oestrous and differed significantly from transport during dioestrous. Maximal velocity of high affinity glutamate transport was higher in synaptosomes from females during dioestrous compared with oestrous and lower in synaptosomes from male rats when compared with female rats in dioestrous and metoestrous. The low affinity sodium-dependent glutamate transporter displayed a 10-fold higher affinity for glutamate during proestrous than during the other three phases of oestrous and in male rats. Exogenously applied oestradiol and progesterone to synaptosomes from male rats showed no effect on glutamate or aspartate transport. No acute effect of oestradiol or progesterone on glutamate currents in oocytes expressing EAAT1 or EAAT2 subtype of glutamate transporter was observed. These results suggest hormonal regulation of high and low affinity sodium-dependent excitatory amino acid transporters over the four day oestrous cycle in synaptosomes from rat cortex. This regulation is unlikely to be due to a direct effect of oestradiol or progesterone on glutamate transporters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanisms of cystine transport.

The transport of L-cystine into cells of the mammalian brain is an essential step in the supply of cysteine for synthesis of the antioxidant glutathione. Uptake of L-cystine in rat brain synaptosomes occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and specificity of inhibitors. Almost 90% of L-cystine transport is by a low-affini...

متن کامل

Glutamate, aspartate, and gamma-aminobutyrate transport by membrane vesicles prepared from rat brain.

To prepare membrane vesicles, nerve terminal preparations (synaptosomes) isolated from rat cerebral cortex were first subjected to hypotonic lysis. After collecting the membranes contained in this fraction by centrifugation, membrane vesicles were then reconstituted during incubation in a potassium salt solution at 37°C. The transport of glutamate, aspartate, or y-aminobutyrie acid (GABA) was m...

متن کامل

Effect of D-penicillamine on Vitamin B6 Activation of Aspartate Aminotransferase in Synaptosomes of the Developing Brain

The activity of aspartate aminotransferase a vitamin B6 containing enzyme was measured in the laysed synaptosomes prepared from rat brain, during development. Administration of vitamin B6 increased the enzyme activity throughout development. The stimulating effect of this vitamin was prevented when the animals were previously treated with D-penicillamine. However, penicillamine alone had n...

متن کامل

DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells.

4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB) was identified as the selective blocker of volume-regulated anion channels (VRAC). VRAC are permeable to small inorganic and organic anions, including the excitatory neurotransmitter glutamate. In recent years DCPIB has been increasingly used for probing the physiologic and pathologic roles of VRAC and was found to p...

متن کامل

Nontransportable inhibitors attenuate reversal of glutamate uptake in synaptosomes following a metabolic insult.

Na+-dependent, high-affinity glutamate transporters in the central nervous system are generally credited with regulating extracellular levels of L-glutamate and maintaining concentrations below those that would induce excitotoxic injury. Under pathological conditions, however, it has been suggested that these same transporters may contribute to excitotoxic injury by serving as sites of efflux f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurochemistry international

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 1999